Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Bull ; 240(2): 105-117, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33939940

RESUMO

AbstractThe nudibranch Tritonia exsulans (previously Tritonia diomedea) is known to have behaviors and neurons that can be modified by perturbations of the Earth's magnetic field. There is no definitive evidence for how this magnetic sense is used in nature. Using an exploratory approach, we tested for possible effects of magnetic perturbations based on underwater video of crawling patterns in the slugs' natural habitat, with magnets of varying strength deployed on the substrate. For analysis, we used a paired comparison of tracks of animals between segments 25-50 cm distant from the magnets and segments of the same tracks 0-25 cm from the magnets, to determine whether any differences depended on the strength of the magnet. Most track measurements (length, displacement, velocity, and tortuosity) showed no such differences. However, effects were observed for the changes in track headings between successive points. These results showed that tracks had relatively higher heading variability when they moved closer to stronger magnets. We suggest that this supports a hypothesis that T. exsulans continuously uses a magnetic sense to help maintain straight-line navigation. Further specific testing of the hypothesis is now needed to verify this new possibility for how animals can benefit from a compass sense.


Assuntos
Gastrópodes , Lesma Marinha , Animais , Ecossistema , Imãs , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...